
Int.J.Curr.Microbiol.App.Sci (2020) 9(1): 1582-1604 

1582 

 

Review Article      https://doi.org/10.20546/ijcmas.2020.901.175  

 

Microbial Based Culture Systems: For Sustainable Shrimp Production 
 

Chethurajupalli Lavanya
1*

, Tambireddy Neeraja
1
,  

Suresh Kummari
2
 and Meshram Supradhnya Namdeo

1 

 
 

1
College of Fishery Science, Sri Venkateswara Veterinary University, Muthukur, Nellore, 

Andhra Pradesh, India 
2
College of Fishery Science, P.V. Narasimha Rao Telangana Veterinary University,   

Pebbair, Telangana, India 

 
*Corresponding author  

 

   

 

 
 

A B S T R A C T  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Introduction 
 

Aquaculture is the fastest growing food sector 

in the world, but today’s industry utmost 

contest is to yield high quality animals at the 

economically viable cost. However, the 

existing intensive shrimp culture systems with 

more water replacements and feed wastage 

causing adverse environmental impacts like 

eutrophication, uncontrollable plankton 

growth and others (Martinez-Porchas and 

Martinez-Cordova 2012). Shrimp culture is 

completely successful but industry needs to 

develop new technologies that will enhance 

the value and environmental sustainability 

(Kuhn et al., 2010). 

 

As an alternative to the existing intensive 

culture systems, biofloc technology (BFT) has 

been developed as an intensive rearing system 
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Marine aquaculture is the fastest growing food producing sector with major 

contribution from carps in terms of volume and shrimp by value. Continuous 

development of aquaculture demands new alternative technologies to achieve 

sustainable production with low economic cost. The microbial based systems like 

biofloc technology (zero water exchange systems) and artificial substrate 

integrated (periphyton based) in normal culture systems represents the best 

methods of practice to get healthy shrimp production. The microbial based 

systems are eco-friendly aquaculture practices which can stimulate both 

heterotrophic or autotrophic groups of bacteria by maintaining carbon to nitrogen 

ratio (C:N) that can converts nitrogenous wastes into useful microbial biomass 

which can serve as natural food source for the cultured organisms. On other side, 

biofloc and periphyton helps in improving water quality by the removal of toxic 

nitrogenous substances from these systems. This technology is economically 

viable, eco-friendly, and socially acceptable. 
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to make shrimp farming less cost effective 

and to increase the nutrient utilization 

efficiency, provide bioflocs as additional feed, 

reduce water use and effluent discharges and 

improve biosecurity (Wasielesky et al., 2006). 

Bioflocs are heterogeneous mixture of 

bacteria, filamentous microalgae, protozoans, 

rotifers, worms and nonliving components. 

Bacterial growth increases when carbon 

source is added to the water with vigorous 

aeration at C/N ratio of 15:1 (Chamberiain 

and Hopkins, 1994; De Schryver et al., 2008). 

Biofloc particles contain useful microbes like 

Bacillus sp., Lactobacillus sp. and Vibrio sp. 

(Anand et al., 2014, Kumar et al., 2015), 

bioactive compounds like carotenoids (Xu 

and Pan, 2013) and are known for probiotic 

(Crab, et al., 2010) and immunostimulant 

(Anguilera-Rivera et al., 2014) properties.  

 

Microbial based culture systems are highly 

suited for shrimps because of its anatomical 

modifications that will permit them to eat up 

microbial flock material and assimilate 

microbial proteins, by that taking advantage 

of microbial biomass as a natural feed. 

Wasilesky et al., (2006) reported that the 

natural productivity in BFT system provides 

natural in-situ food sources to the culture 

organism and enhance growth and survival. It 

is documented that L. vannamei mostly feeds 

on detritus and benthos (Cordova and Pena-

Messina, 2005), consume microbial floc in 

biofloc systems 
[12]

 and can be able to thrive 

well (Hargreaves, 2013). Growing this species 

under biofloc based system has shown to 

improve digestive enzyme activity, growth 

performances and survival (McInthos, 2000; 

Tacon et al., 2002; Buford et al., 2004; Xu 

and Pan, 2012).  

 

The probiotic effect of microbial floc can act 

on the Vibrio sp. both internally and 

externally and some external parasites of 

shrimp (Panigrahi et al., 2014). The periodical 

addition of carbohydrates in the water is 

known to select for polyhydroxy alkanoates 

(PHA) mobilization of bacteria in the form of 

bioflocs which can generate poly-ß hydroxy 

butyrate (PHB), having antibiotic and 

immunomodulatory effects (Sinha et al., 

2008) and on consumption of these flocs by 

shrimp, PHAs degrades in the gut and 

contribute to antibacterial properties (Defoirdt 

et al., 2007).  

 

The microorganisms in the bioflocs and their 

cell metabolites can enhance innate immune 

system of shrimp and give protection against 

microbes (Smith et al., 2003; Vazquez et al., 

2009). Panigrahi et al., (2007) suggested that 

bioflocs are having some immune associated 

genetic materials like prophenoloxidase (PO), 

PO activation enzymes and serine proteinase1 

thus implying immunomodulation in the 

shrimp. Kim et al.(2014) concluded that high 

total haemocyte count (THC) and PO activity 

in L. vannamei cultured in microbial based 

culture systems clearly showing significantly 

higher expression levels of proPO1, proPO2 

and PPAE1 genes, which regulate the PO 

stimulation systems.  

 

The use of artificial substrates is another 

technique to enhance shrimp yield. These 

substrates can give space for the growth of 

periphyton which contains heterogeneous 

groups of microorganisms which can act as 

natural food for the cultured organisms and 

maintained water quality (Langis et al., 1988; 

Ramesh et al., 1999; Thompson et al., 2002). 

Some of the widely using natural substrates 

are bamboo, paddy straw, wood, sugar 

bagasse (van Dam et al., 2002) and some 

artificial substrates like polyethylene and 

polypropylene screens, plastic bottles and 

certain commercial products (Aquamats
TM

) 

have been used as in culture systems of fish 

(Azim et al., 2004) and shrimp (Huchette et 

al., 2000; Bratvold and Browdy, 2001; 

Richard et al., 2009; Zhang, 2011). The 

substrate-based culture methods are also 
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known as periphyton-based culture systems 

and the periphyton on substrate is consists of 

heterogenous mixtures like algae, bacteria, 

fungi, protozoa, zooplankton, detritus and 

other invertebrates (Azim and Wahab, 2005). 

It can absorb nutrients such as ammonia and 

nitrite from water and maintained the 

dissolved oxygen (DO) and pH (Azim et al., 

2002; Dodds, 2003; Bender et al., 2004; 

Schveitzer et al., 2013).  

 

The main aim of this review is application of 

microbial based culture systems in shrimp 

culture for sustainable production. The above 

information is mainly focus on the use of 

complex mixture of microorganisms such as 

bacteria, filamentous microalgae, protozoans, 

rotifers, worms and nonliving components as 

a natural food for the shrimp. Diverse studies 

have been conducted in this field with 

successful and useful results in shrimp 

culture. In addition to that, this review also 

gives basic knowledge about biofloc system 

to the students, researchers and industry 

people.  

 

Suitability of BFT for Shrimp Culture 

 

The basic factors in selection of species to be 

reared in a biofloc systems are includes 

tolerance to high suspended solids of water, 

physiological adoptions that permit them to 

feed on microbial biomass and digest 

(Milstein et al., 2001; Crab et al., 2012; 

Hargreaves, 2013). In the wild, vannamei 

ingest vast classes of phytoplankton, debris, 

macrophytes, small molluscs, crustaceans and 

zooplankton (Senanan et al., 2009). A study 

by Kent et al., (2011), revealed the capability 

of L. vannamei juveniles to feed on 

microalgae, reared in algal culture flasks. 

Thus crustaceans like shrimp and prawns are 

suitable species for BFT systems since they 

are detritivorous and opportunistic feeders 

which feed on bacteria, fungi and other 

decomposed material (Milstein et al., 2001). 

Coyle et al., (2010) and Perez-Fuentes et al., 

(2013) Shrimp prefer natural over commercial 

food as they feed continuously. Hargreaves 

(2013) specified that the cultured organisms 

like shrimps and tilapias have morphological 

modifications that permit them to feed on 

natural food i.e biofloc and can able to digest 

it. The ability of various species of shrimp 

and prawn to utilize biofloc, there by its 

positive effect on physiological functions and 

growth is well documented (Table 1). 

 

Nutritional Composition of Biofloc 

 

Bioflocs are the best nutritional resource, but 

it is depends on the type of systems, 

environments (Ju et al., 2008a; Hargreaves, 

2013). Intrinsically, bioflocs are eating by the 

reared organisms and start a nutrient recycling 

process within an aquaculture system. The 

nutritional worth of bioflocs to cultured 

organisms is reliant on many agents for 

instance food selection, both the capability to 

consume and digest it (Hargreaves, 2006). 

Looking at nutritional quality of bioflocs as 

shrimp food, different studies have been done. 

Bioflloc contains adequate quantity of crude 

protein, essential lipids, carbohydrates and 

ash required for aqua feed (Crab et al., 2010; 

Ballester et al., 2010). Ballester et al., (2010) 

reported bifloc Contains 30.4% of crude 

protein. This is accordant with 25-50% said 

by Hargreaves (2013). However, Ekasari et 

al., (2014) presented 17.2-27.8% protein for 

biofloc harvested from shrimp culture 

systems, with Crab et al., (2010) In the 

bacteriological food web, essential lipids and 

poly unsaturated fatty acids (PUFA) are 

mostly released from flagellated and ciliated 

protozoans groups and other cyanophyta 

(Zhukova and Kharlamenko, 1999), although 

majority of microbes are insufficient sources 

for PUFA (Meyers and Latscha, 1997). Crab 

et al., (2010) reported that palmitic acids, 

palmitoleic acids and linoleic acids are the 

major group of fatty acids in biofloc.  
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In biofloc the fatty acid profiles may vary 

based on the carbon sources employed, the 

type of water used (fresh water, sea water) 

and the methods of production suggested by 

Emerenciano et al., (2013). They also 

reported the presence of essential fatty acids 

such as linoleic acids, linolenic acids and 

arachidonic acids etc., in biofloc. In biofloc 6-

7.5% of lipid content is found by by Ekasari 

et al., (2014) and it was within optimum 

range of 0.5-15% said by Hargreaves (2013). 

The major variations in nutritional properties 

of microbial biomass occur due to differences 

floc development (Rittmann and Mc Carty, 

2001). For instance, bacteria could not 

develop on acetate and glycerol substrates but 

those can release huge amounts of 

exopolysaccharides, but are utilized by 

cultures organisms mostly spend for cell 

growth which can enhance the protein 

percentage in microbial biomass (Crab et al., 

2010). These studies reported that nutritional 

value of bioflocs depends on the Carbon : 

Nitrogen ratio and nature of substrates etc. 

Hence, the fundamental element for the 

development of biofloc is choice of 

carbohydrate source. Proximate compositions 

of microbial biomass in different studies are 

shown in Table. 2 

 

Microbial Community in Biofloc 

 

Biofloc development in outside system is very 

much profit oriented because of production of 

photoautotrophs during day time with light 

(Ray et al., 2009; Avnimelech, 2012; Baloi et 

al., 2013). and water colour may change from 

a green algal type to a brown bacterial type by 

increasing feeding rate, and calculated for 

microbial groups as colour index (Hargreaves, 

2013). This colour change is one of the most 

important methods for reduction of ammonia 

to microbial groups, which can also demand 

more aeration (Hargreaves, 2013). The 

beneficial bacteria in the BFT are providing a 

natural food and maintain quality of water 

(Avnimelech, 2012). In BFT, 

chemoautotrophic nitrifying bacteria, and 

heterotrophic ammonia assimilating bacteria 

are two important bacterial groups to maintain 

water quality (Ebeling et al., 2006; Ray et al., 

2010a), with the actions high oxygen demand 

and low level of alkalinity, which needs more 

DO supply (Ray et al., 2010a). 

 

The pathway of nitrifying bacteria in culture 

system has been widely studied (Tal et al., 

2003; Michaud et al., 2006; Crab et al., 

2007). The main principle is conversion of 

total ammonia nitrogen to nitrites and nitrite 

is converted into nitrate which is less toxic to 

fish (Peng and Zhu, 2006; Ray et al., 2010b; 

Hargreaves, 2013) and simultaneously the 

removed TAN may developed it into cellular 

protein and it is providing natural food for 

rearing animals (Ebeling et al., 2006; Ray et 

al., 2010a). In addition to that, the rate of 

growth of heterotrophic bacteria is ten times 

more than nitrifying bacteria when sufficient 

organic carbon supplied, which may results in 

reduction of TAN levels and increment of 

microbial community and nutritional quality 
[63, 12, 13]

. Some studies have been carried out 

on microbial community structure and 

composition of bioflocs in shrimp culture 

(Hargreaves, 2006; Crab et al., 2012; 

Hargreaves, 2013). Some studies have been 

carried out on microbial community structure 

and composition of bioflocs in shrimp culture 

(Ju et al., 2008a; Ballester et al., 2010; Anand 

et al., 2014; Ekasari et al., 2014; Kumar et al., 

2015). According to Ju et al., (2008) 

microbial biomass from L. vannamei cultured 

tanks having 24.6% of phytoplankton 

(dominated by diatoms like Thalassiosira, 

Chaetoceros and Navicula), 3% bacterial 

groups (two-third was G-ve and one-third of 

G+ve), a small quantity of protozoans (98% 

flagellates, 1.5% rotifers and 0.5% amoebae), 

33.2% of dead material and the remaining ash 

(39.25%). It indicates that microbial biomass 

having heterogenous groups organisms. 
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Biofloc from F. paulensis cultured tanks were 

consists of heterotrophic bacteria, 

cyanobacteria, dinoflagellates, ciliates, 

flagellates and rotifers (Ballester et al., 2010). 

 

Anand et al., (2014) The dominant microbial 

groups are Vibrio sps, Lactobacillus sps, 

Bacillus sps and fungi in biflocs. However, 

Vibrio sps. and Bacillus sps. dominated over 

Lactobacillus sps. The probiotic bacteria such 

as Bacillus sps. and Lactobacillus sps. in their 

gastrointestinal tract (GIT) of L. vannamei 

can leads to enhance digestive enzyme 

activity and immune response (Xu and Pan, 

2013). The digestive enzyme secretions from 

Bacillus and Lactobacillus in the carbon 

addition systems shows better growth rate 

(Ringo et al., 2012; Anand et al., 2014). The 

microbial biomass in BFT can increase the 

digestive and assimilative capacity of shrimp 

resulted in best growth rate and survival 

(Anand et al., 2014). In another study by 

Ekasari et al., (2014) revealed revealed 

significantly lower (P < 0.05) total viable 

bacteria count (TBC) in the waters of 

conventional semi intensive system over the 

biofloc system. Kumar et al., (2015) reported 

that molasses added treatment tank with 

highest level of TBC and Vibrio count than 

non-biofloc system.  

 

Microbial role in stimulation of digestive 

enzyme activity  
 

The microbial biomass in BFT plays a major 

role in stimulation of digestive enzymes 

activities in shrimps (Moss et al., 2001; Xu et 

al., 2012a) which could increase the growth 

rate of shrimp (Anand et al., 2014). Xu and 

Pan (2012) The increment of protease and 

amylase enzyme activities in L. vannamei 

reared in BFT systems. The beneficial 

bacterial groups such as Bacillus sps. in the 

biofloc helps to modify the physiological and 

immunological status of the animal, by 

colonization of bacterial in the GIT (Zhao et 

al., 2012; Xu and Pan, 2013). Studies in 

similar lines has shown increased level of 

digestive enzymes activity in fish and shrimp 

fed with probiotics, microalgae and 

periphyton supplemented diets (Lara-Flores et 

al., 2003; Ziaei-Nejad et al., 2006; Anand et 

al., 2014). In shrimps microbial flocs shows 

positive effect towards the enzyme activity 

which can accelerate feed digestibility and 

utilization suggested by Xu and Pan (2014). 

The feeding of microbial floc at 4% and 8% 

level to the prawns, it can increase the growth 

performance and digestive enzyme activity of 

like amylase, cellulose and protease in BFT 

systems compared with control reported by 

(Anand et al., 2014).  

 

Microbial role in water quality 

maintenance 

 

Microbial floc is another technology for 

keeping better water quality by the in situ 

action of living bacteria in the water, 

dominantly by heterotrophic group of bacteria 

(Avnimelech 1999 & 2012; Hargreaves, 

2013). The supplementation of tapioca into P. 

monodon culture system can reduce the total 

ammonium nitrogen and NO2-N 

concentrations reported by Hari et al., (2004 

& 2006). The addition of tapioca in M. 

rosenbergii culture systems significantly 

decreases the TAN and NO2-N concentrations 

reported by Asaduzzaman et al., (2008). Ray 

et al., (2011) measured water temperature, 

DO, pH and salinity twice per day and TAN, 

nitrite and nitrate once a week in L. vannamei 

culture systems with two levels of biofloc viz., 

low biofloc level (T-LS) and high biofloc 

level (T-HS) has shown higher TAN, NO2 

and lower NO3 levels in T- LS than that of T-

HS treatment. Raj Kumar et al., (2015) 

studied in three different biofloc systems viz., 

molasses, tapioca and wheat on the water 

quality, microbial floc composition and 

growth in L. vannamei revealed significantly 

less nitrogen species level in biofloc systems 
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than that of control system without biofloc. 

Luis-Villaseñor et al., (2015) recorded water 

temperature, DO, pH, salinity twice daily and 

TAN, nitrite and nitrate at weekly intervals in 

L. vannamei culture showed significantly 

lower TAN, nitrite and nitrate levels in BFT 

system than control system. However, 

Effendy et al., (2016) observed significantly 

higher (P < 0.01) values of NO2 and NO3 in 

semi biofloc system in comparison with semi 

intensive culture system of Fenneropenaeus 

indicus. Manan et al., (2017) also conducted 

experiment on bioremediation process in 

biofloc technology of P.monodon and 

concluded that the microorganisms in biofloc 

act as natural bioremediation agents ensure 

that they can maintain optimum water quality 

for shrimp. 

 

Microbial role in enhancement of growth 

in shrimp  
 

The growth efficiency is the foremost 

important to the aqua farmers throughout the 

world. The benefits of biofloc towards growth 

and survival of shrimp has been reported by 

Hari et al., (2004), Wisielesky et al., (2006), 

De Schrvey et al., (2008), Avnimelech and 

Kochba (2009), Krummenaeuer et al., (2011), 

Xu and Pan (2012), Kim et al., (2014), Kumar 

et al., (2015), Luis-Villasenor et al., (2015) 

and Effendy et al., (2016). Shrimp are mostly 

detritus feeders (Focken et al., 1998) that 

feeds on bacteria, fungi and decomposing 

material (Milstein et al., 2001; Serfling, 

2006), thus capable of utilizing biofloc as 

food. The biofloc can elevate the rate of 

nutrient ingestion, absorption, assimilation 

and it can give a source of cellular nutrition in 

vannamei sps. (Tacon et al., 2002). The 

shrimp or fish has so many benefits by 

feeding on biofloc such as supply of various 

nutrients by the microbial community, 

increasing feed utilization and growth, 

stimulating digestive enzyme activities, 

lowering FCR and enhancing immune system 

(Burford et al., 2004; Moss et al., 2006; 

Wasielesky et al., 2006; Ballester et al., 2010; 

Jang et al., 2011; Emerciano et al., 2012; Xu 

and Pan, 2012; Perez-Fuentes et al., 2013). 

 

Xu and Pan (2012) reported more survival 

rate and better growth of vannamei in the 

BFT system with carbohydrate addition. 

Hargreaves (2013) reported that 20-30% of 

shrimp growth in biofloc based culture system 

is obtained from microbial proteins in the 

water. The rate of assimilation of protein and 

lipid in biofloc treatments showed a positive 

contribution of biofloc prodeced from waste 

material as a natural feed for the cultured 

organisms with lower FCR in the BFT 

systems (Megahed et al., 2010; Zhao et al., 

2012; Xu et al., 2012; Gao et al., 2012). Xu et 

al., (2012) reported that BFT-30% and BFT-

35% crude protein (CP) feed tank with 

significantly higher weight gain and SGR in 

L. vannamei juveniles when compared to 

control (clear water and 35% CP feed) and no 

significant difference (P < 0.05) among BFT-

25%, BFT-30% and BFT-35%. Anand et al., 

(2014) evaluated the effect of biofloc under 

two carbohydrate sources (rice flour-R and 

molasses-M) and two levels protein diets 

(32% and 40%) in P. monodon juveniles has 

shown better (P < 0.01) growth rate in (40 + 

R), (40 + M) and (32 + R) treatments than 

control groups (32% and 40% protein diets 

without biofloc). Kumar et al., (2015) found 

significantly higher (P < 0.05) weight gain 

and protein conversion rate in L. vannamei 

fed on 35% protein diet in biofloc systems 

with cornmeal as carbohydrate source than 

the control shrimp without biofloc. Effendy et 

al., (2016) observed significant increase (P 

<0.01) in growth of Fenneropenaeus indicus 

fed with 35% protein feed in biofloc systems 

when compared to clear water system.  
 

Biofloc for shrimp Health Management 
 

The presence of microbial biomass in culture 

system had been reported to enhance the 

health of the cultivated organism which may 
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be due to the inhibition of pathogens reported 

by Bricknell and Dalmo (2005). Bioflocs is a 

new technology for disease management with 

pobiotic effect in contrast to conventional 

materials like antibiotic, antifungal, external 

probiotic and prebiotic supplementation 

(Emerenciano et al., 2013). Further, bioflocs 

are reported to harbor huge microbes and 

bioactive compounds that shows positive 

effect on health of the shrimp (Xu and Pan, 

2013). 

 

Biofloc is also having amino sugars like 

glucosamine, muramic acid, bromophenols, 

phytosterols and pigments like carotenoids, 

chlorophylls and xanthophylls (Ju et al., 

2008a) they can elevate shrimp immune status 

by stimulating immune system (Linan-

Cabello et al., 2002; Burford et al., 2004). In 

BFT system by regular supplementation of 

carbohydrate can enhance the growth of 

polyhydroxyalkanoate (PHA) aggregating 

microorganisms (Salehizadeh and 

Shojaosadati, 2001). Bacteria and the 

synthesized compounds might act as effective 

bio-control agents while providing the host 

with beneficial microbial balance in the gut 

(Emerenciano et al., 2013).  

 

Immunological response of shrimp in 

biofloc system 

 

The crustacean having a nonspecific immune 

system with phagocytic and humoral contents, 

as a foremost defense (Lee and Soderhall, 

2001). The common immunostimulants like 

peptide, lipopolysaccharides, probiotics, 

microalgae, carotenoids, vitamins and 

peptides (Devaraja et al., 1998; Ringo et al., 

2012). They can elevate immunity power in 

shrimps and enhance capacity to eject 

pathogenic bacteria (Flegel, 1997; Nonwachai 

et al., 2010). Ju et al., (2008a,b) and 

Anguilera-Rivera et al., (2014) suggested that 

the microbial flocs can confer benefits to the 

shrimp immune system which may be due to 

the presence of carotenoids, retinoids, poly-β-

hydroxybutyrate and exo-enzymes. 

Microorganisms has been used as immune-

stimulants to enhance immune system and/or 

antioxidant status of shrimp, followed by 

increasing their resistance towards pathogenic 

bacteria (Ninawe and Selvin, 2009; Smith et 

al., 2003; Becerra-Dorame, 2012). It has been 

reported that Acute Hepatopancreatic 

Necrosis Syndrome (AHPNS) an raising 

disease outbreak with heavy mortality rate in 

shrimp culture appeared to have lower 

incidence at BFT systems (NACA, 2012) 

which suggest that biofloc can have positive 

impact on immune-response of shrimp. 

 

In shrimps, three different haemocytes, viz., a 

granulocytes, granular and semi-granular 

haemocytes (SGH) has documented 

(Rodriguez and Le Moullac, 2000). The 

haemocytes perform different activities like 

phagocytosis, encapsulation, nodular 

aggregation (Soderhall and Cerenius, 1992; 

Vargas-Albores et al., 1998) and production 

of Propo enzymes (Lopez et al., 1996). In 

shrimp defence system granular cells plays an 

important role by their antimicrobial response 

(Chisholm and Smith, 1995) similarly a 

granulocytes act as a phagocytes, and 

involved in the production of agglutinins and 

antibacterial peptides (Rodriguez and Le 

Moullac, 2000).  

 

The importance of total haemocyte count 

(THC) in disease resistance of shrimp has 

been documented (Rodriguez and Le 

Moullac, 2000; Ji et al., 2009; Xu and Pan, 

2013). Rodriguez and Le Moullac (2000) 

reported that low THC value in L. stylirostirs 

became very sensitive to virulent Vibrio 

alginolyticus. In penaeids, THC from 20 - 40 

x 10
6
 cells ml

- 1
of haemolymph (Chang et al., 

1999). An increased levels of haemocyte 

count has been recorded after feeding shrimp 

with feed supplements such as probiotics 

(Rengpipat et al., 2000), β-glucan (Lopez et 
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al., 2003), macroalgae and β -carotene 

supplemented diets (Supamattaya et al., 

2005). The microorganisms of biofloc 

ingested by the shrimp may release 

substances in the gastrointestinal tract that 

could potently stimulate the innate immunity 

and release more haemocytes into the 

circulation (NACA, 2012). 

 

Xu and Pan (2013) significantly higher THC 

and phagocytic activity of the haemocytes in 

vannamei cultured in BFT cultures than 

control. The vannamei cultured in microbial 

floc tank with addition of 20% to 35% protein 

levels showed that there is no differences in 

total haemocyte count and immune status 

between treatment tanks showing that there is 

no effect by decreasing the protein level in the 

biofloc tanks (Xu and Pan, 2014). Ekasari et 

al., (2014) found no significant difference in 

THC of vannamei shrimp rearing in biofloc 

tanks using various carbon sources. However, 

THC of vannamei from biofloc system having 

high values than control. Toledo et al., (2014) 

also reported no significance difference in 

THC of L. vannamei juveniles fed on diets 

with three different dietary lipids grown in 

molasses based biofloc systems. Significantly 

higher THC, granulocytes and hyaline cells 

count was observed in haemolymph of P. 

monodon juveniles grown in rice flour based 

biofloc system compared to controls with no 

biofloc (kumar et al., 2015). F. indicus 

juveniles grown in bifloc ponds have shown 

higher (P < 0.01) THC in haemolymph than 

that of without biofloc shrimp before and after 

cold challenge test (Effendy et al., 2016). 

 

In crustaceans, haemolymph components like 

protein, albumin, glucose, triglycerides and 

cholesterol levels reflects the nutritional 

quality of shrimp and it is high in shrimp fed 

on natural food (Gong et al., 2000) or as a 

outcome of stress (Hall and Ham 1998; Lara-

Flores et al., 2007). In serum protein of 

shrimps around 90-95% of haemocyanin is 

present (Depledge and Bjeregaard, 1989) and 

therefore its reduction can possibly affect 

specific immune proteins of that animal 

(Perazzolo et al., 2002). The serum total 

protein concentration in tiger shrimp was 

reported to decreased after exposing to the 

higher level of nitrite nitrogen (Chen and 

Cheng, 1995). 

 

An experimental study by Anand (2012) 

revealed significantly higher (P < 0.05) levels 

of serum protein in P. monodon juveniles fed 

on biofloc incorporated diets when compared 

the feed without biofloc component. Kumar et 

al., (2015) reported significantly higher (P < 

0.01) serum protein levels in monodon 

juveniles cultured in microbial floc systems 

than that of conventional system. Both semi-

granular and granular cells are active in the 

proPO activity, which has a role in 

identification and defense in crustaceans 

(Rodriguez and Le Moullac, 2000; Chiu et al., 

2007). Phenoloxidase is an enzyme of the 

crustaceans that leads to melanisation of 

foreign cells to inactivate and supress their 

multiplication in the host. Phenoloxidase is 

mostly produced by cell wall of bacteria such 

as β-1,3-glucans and lipopolysaccharides 

(LPS) (Perazzolo and Barracco, 1997; 

Sritunyalucksana and Soderhall (2000); 

Cerenius and Soderhall, 2012). Shrimps are 

consuming biofloc as a natural food in BFT 

systems (Crab et al., 2012; Ekasari et al., 

2014) that increases in THC and PO activity 

which was confirmed in vannamei biofloc 

systems by Kim et al., (2014) clearly showing 

significantly higher levels of proPO1, proPO2 

and PPAE1 genes, which regulate the proPO 

activation systems. Higher PO activity in L. 

vannamei grown in the biofloc systems was 

also observed during both pre and post 

challenging test by injection with infectious 

myonecrosis virus (IMNV) than that of 

shrimp from the non-biofloc control system 

(Ekasari et al., 2014). Kumar et al., (2015) 

reported higher (P < 0.05) serum 
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phenoloxidase activity in monodon juveniles 

reared in BFT system than control system. 

 

In crustaceans, lysozymes are the primary 

defenders against pathogens (Vazquez et al., 

2009). The invertebrate (i-lyz) lysozyme 

attacks both Gram-positive bacteria (Vocadlo 

et al., 2001) and G-ve bacteria (Peregrino-

Uriarte et al., 2012). The c-lyz (like hen egg 

white lysozyme) has been defined in various 

crustaceans like L. vannamei (Mundo et al., 

2003), P. Japonicas (Hikima et al., 2003), P. 

chinensis (Bu et al., 2008), P. monodon 

(Supungul et al., 2002; Tyagi et al., 2007), F. 

merguiensis (Mai and Hu 2009) and L. 

stylirostris (Lorgeril et al., 2005; Mai and Hu, 

2009). Vega et al., (2006) reported 

antibacterial activity of c-lyz from L. 

vannamei against V. alginolyticus, V. 

parahemolyticus and V. cholerae. Chen et al., 

(2015 reported decreased lysozyme activity in 

vannamei that dipped in seawater having 600 

ppm Gracilaria tenuistipitata extract after 72 

hrs of post ammonia (5 ppm) stress while in 

control the lysozyme activity significantly 

decreased (P < 0.05) after 24 hrs of exposure 

to 5 ppm of ammonia itself. Therefore, 

vannamei that received Gracilaria 

tenuistipitata extract showed slow decreased 

and fast recovery in lysozyme activity than to 

their actual values showing a positive immune 

response of lysozyme against ammonia stress.  

 

Biofloc production and maintenance 

 

Bioflocs are defined as aggregates (flocs) of 

algae, phytoplankton, free and attached 

bacteria, grazers of bacteria such as ciliates, 

flagellates, rotifers, nematods and copepods, 

living and dead material such as faeces and 

uneaten feed (Hargreaves, 2006; Crab et al., 

2009; Ray et al., 2010b; Ballester et al., 2010; 

Hargeaves 2013), yeast, cyanobacteria 

(Becerra-Dorame, 2012), colloids, organic 

polymers, cations and dead cells (De Schryver 

et al., 2008) and inorganic particies (Burford 

et al., 2003). Usual bioflocs are in unevenly 

manner, have a variety of distribution of 

particle size, are fine, easily compressible, 

and highly porous and are permeable to fluids 

(Chu and Lee, 2004). The development of 

biofloc in a new rearing culture tank requires 

inoculum such as soil or high microbial floc 

water from a previous production system 

(Gaona et al., 2011). Avnimelech (1999) 

reported using of 20 g clay soil, 10 mg 

Ammonium Sulphate [(NH4)2SO4] and 200 

mg glucose (carbohydrate source) shaken for 

12 h with 1L tap-water for the initial 

production of bioflocs. Similarly used 20 g of 

pond bottom soil in 1L of well aerated water 

containing 10 mg of (NH4)2SO4 and 400 mg 

of different carbon sources viz., tapioca, 

wheat, corn and sugar bagasse and were 

incubated for 24 h for initial floc 

development. 

 

The main factor for the formation of 

microbial flocs is the capability of microbial 

cells to form microbial aggregates and 

quorum sensing property (De Schryver et al., 

2008). Another contributing factors are 

Carbon:Nitrogen ratio, type of carbon source 

and inorganic nitrogen, aeration, pH, 

temperature etc. The C:N ratio plays an 

important role in BFT systems (Hargreaves, 

2013), 
]
, and is an essential factor in 

development of inorganic nitrogen to 

microbial cells (Avnimelech, 1999; McIntosh, 

2000; Hargreaves, 2013). The conversion rate 

of heterotrophic bacteria in general is 40-

60%, carbon:nitrogen ratio of 10 or more in 

food is required for the growth of 

heterotrophic bacteria (Avnimelech, 1999). 

By increasing the C:N ratio, the heterotrophic 

bacteria can absorb ammonia from the water 

and converted into microbial biomass, 

containing protein (Hargreaves, 2013). 

Fontenot et al., (2007) used four C:N ratios 

(5:1, 10:1, 20:1 and 30:1) in shrimp cultures 

by supplying molasses, and concluded that the 

C:N ratio of 10:1 gave the better results in 
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terms of high level of inorganic nitrogen 

removal from water. However, Luo et al., 

(2014) reported that C:N ratio should be > 

10:1. Hargreaves (2013) reported that C:N 

ratio 12-15:1 will support the heterotrophic 

bacteria. Further 
[67] 

reported with optimal 

ratio of C:N from 15-20:1. 

 

In In the case of high TAN levels Avnimelech 

(2012) suggested to apply 20 ppm of organic 

carbon to decrease TAN level by 1 mg/l. The 

supplementation of organic carbon in biofloc 

systems is very close to the feeding rate and 

protein content, or nitrogen content of the diet 

(Hargreaves, 2013). He reported that for 

every one kilogram of feed 30-38% protein 

added to the water, 0.5-1 kg of carbohydrate 

should be supply to keep high C:N ratio. 

 

Inorganic nitrogen and carbohydrate addition 

are primary materials for huge production of 

heterotrophic bacteria in BFT systems 

(Avnimelech, 1999; Ebeling et al., 2006). 

Heterotrophic bacteria utilize inorganic 

nitrogen produced from feed, excretions or 

fertilizers (Ammonium Sulphate). The 

carbohydrate acts as a substrate for processing 

BFT and development of microbial floc 

(Avnimelech, 1999). Even though, selection 

of carbon source depends on its cost, easy 

availability, biodegradability and efficiency of 

bacterial assimilation. Various types of 

carbon sources used with different cultured 

species in BFT systems are presented in 

table.3.  

 

The organic carbohydrate supplementaion is 

related to the feeding rate and is generally 

added to water once, or twice in a day, after 

feeding (Avnimelech, 1999; Azim and Little, 

2008; Xu et al., 2012). Wheat powder was 

used as carbon because of its easy accessible 

and making of best quality microbial floc 

(Azim and little, 2008; Ballester et al., 2010; 

Anand et al., 2014; Raj Kumar et al., 2015). 

Anand et al., (2014) used 4.03 Kg of wheat 

flour to develop 1kg of floc. Earlier, Kuhn et 

al., (2009) reported 1 kg microbial flocs 

production from 1.5 kg of sucrose in a 

bioreactor. 

 

Raj Kumar et al., (2015) reported that the 

addition of wheat flour could helps to develop 

microbial floc and maintain water quality and 

increase shrimp yield over molasses, tapioca 

flour biofloc systems. Similarly, Anusha 

(2017) observed best floc composition in 

wheat flour produced biofloc when compared 

to tapioca, rice flour and molasses as carbon 

sources.  

 

Suitability of Substrate based Biofloc 

Technology for Shrimp Culture 

 

The artificial substrates are new methods 

employed in the growth of aquatic animals to 

elevate efficiency in rearing systems 

(Schveitzer et al., 2013). Artificial substrates 

like polyethylene and polypropylene sheets, 

plastic bottles, nets and other materials 

(Aquamats
TM

, Meridian, Calverton, MD, 

USA) have been produced and using under 

different culturing conditions, and reports of 

these experiments showing that these 

substrates can significantly increase the yield 

and survival of shrimps (Huchette et al., 

2000; Bratvold and Browdy 2001; Richard et 

al., 2009; Zhang, 2011; Zhang et al., 2014). 

Autotrophic microalgae and zooplankton 

present in periphyton of substrate based 

methods gives in situ food as microalgae 

components viz, diatoms, ciliates, flagellates, 

copepods and nematodes for rearing organism 

(Arnold et al., 2005; Abreu et al., 2007; 

Fernandes da Silva et al., 2008; Audelo-

Naranjo et al., 2010). According to Burford et 

al., (2004) epiphytes offering carbon and 

nitrogen (39-53%) to shrimp as they can be 

easily utilized by shrimp. In intensive 

cultures, substrates provide an extra surface 

area to the shrimp, which can decrease the 

competition for space and cannibalism 
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(Abdussamad and Thampy, 1994). The 

bottom living animals like shrimps are 

constrained to two dimensional space than 

three-dimensional space (Kumlu et al., 2001; 

Otoshi et al., 2006) and have been reflects 

that the artificial substrates increase the space 

for living (Tidwell et al., 1999; Arnold et al., 

2005; 2006; Zarain-Herzberg et al., 2006). 

Addition of vertical substrate into shrimp 

culture environment helps in removal of 

suspended solids which can significantly 

reduce the organic pollutants load (Langis et 

al., 1988; Hargreaves, 1998; Ramesh et al., 

1999). 

 

Table.1 Studies on shrimp and prawn species as suitable candidates for biofloc culture systems 

 

SL.No Species Reference 

 1 

 

 

 

 

 

 Litopenaeus vannamei 

 

 

 

 

 

Buford et al., 2004; Wasielesky et al., 2006; Samocha et 

al., 2007; Ju et al., 2008a; Kuhn  

et al., 2008, 2010; Krummenauer et al., 2011; Emernciano 

et al., 2012; Bauer et al., 2012; Maica et al., 2012; Ekasari 

et al., 2014; Luis-Villaseñor et al., 2015; Raj Kumar et al., 

2015; M. H. Khanjani et al., 2016. 

2 Penaeus monodon Avnimelech and Mokady, 1988; Panjaitan, 2004. 

3 Penaeus setiferus Emernciano et al., 2009. 

4 Farfantepenaeus paulensis Emernciano et al., 2011a. 

5 Penaeus stylirostris Emernciano et al., 2011b. 

6 Farfantepenaeus brasiensis Emernciano et al., 2012. 

7 Fenneropenaeus indicus Effendy et al., 2016. 
 

Table.2 Proximate analysis of Biofloc particles in different studies 
 

Crude 

protein%  

Carbohydrate

% 

Lipids% Crude 

fiber% 

Ash% Reference 

43.00  - 12.5 - 26.5 McIntosh et 

al., 2000 

31.2  - 2.6 - 28.2 Tacon et al., 

2002 

12.0-42.0  - 2.0-8.0 - 22.0-46.0 Soares et 

al., 2004 

31.1  23.6 0.5 - 44.8 Wasielesky 

et al., 2006 

26.0-41.9  - 1.2-2.3 - 18.3-40.7 Ju et al., 

2008a 

30.4  - 1.9 12.4 38.9 Ju et al., 

2008 

49.0  36.4 1.13 12.6 13.4 Kuhn et al., 

2009 

38.8  25.3 <0.1 16.2 24.7 Kuhn et al., 

2010 

28.8-43.1  - 2.1-3.6 8.7-10.4 22.1-42.9 Maica et al., 

2012 
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Table.3 Various carbon sources tested in BFT systems 
 

S.No Carbon Source Culture Species and Reference (s) 

1 Acetate M. rosenbergii (Crab et al., 2010) 

2 Cassava meal P. monodon (Avnimelech and Mokady, 1988) 

3 Cellulose O. niloticus (Avnimelech et al., 1989) 

4 Corn flour Hybrid bass (Milstein et al., 2001); 

  Hybrid tilapia (Asaduzzaman et al., 2010) 

5 Corn meal L. vannamei (Luis-Villasenor et al., 2015) 

6 Dextrose L. vannamei (Suita, 2009); 

L. vannamei Serra et al., (2015) 

7 Glycerol and 

glycerol+Bacillus 

M. rosenbergii (Crab et al., 2010) 

8 Glucose M. rosenbergii (Crab et al., 2010) 

9 Molasses L. vannamei (Burflord et al., 2004; Samocha et al., 

  2007) ; P. monodon (Panjaitan, 2004); P. monodon (Kumar et al., 

2015)Serra et al., (2015), F. indicus (Effendy et al., 2016) 

10 Rice flour P. monodon (Kumar et al., 2014) 

P. monodon (Kumar et al., 2015) 

L. vannamei Serra et al., (2015) 

11 Sorghum meal O. niloticus (Avnimelech et al., 1999) 

12 Soya hull Fenneropenaeus indicus (Effendy et al., 2016) 

13 Starch O. niloticus x O.aureus (Crab et al., 2009); 

  Mozambique tilapia (Avnimelch, 2007) 

14 Sucrose L. vannamei (Xu and Pan, 2014) and Xu et al., (2013 ) 

15 Tapioca L. vannamei (Hari et al., 2004); 

  M. rosenbergii (Asaduzzaman et al., 2008) 

16 Tapioca by product L. vannamei (Ekasari et al., 2014) 

17 Wheat flour O. niloticus (Azim and Little 2008; Anusha, 2017); 

  P. semisulcatus (Mohamed, 2010); 

  P. monodon (Anand et al., 2012); 

  L. vannamei (Raj Kumar et al., 2015) 

18 Wheat bran F. brasiensis (Emerenciano et al., 2012); 

 + molasses F. paulensis (Emerenciano et al., 2011b); 

  F. duorarum (Emerenciano et al., 2012); 

  F. paulensis (Ballaster et al., 2010) 

Nutritional Value of Periphyton 
 

Periphyton defined as a complex material 

attached on immersed substrates consists of 

phytoplankton, zooplankton, benthic 

organisms and detritus (Weitzel, 1979; Azim 

et al., 2004). Microalgae produced on 

substrate are high sources of nutrient 

compounds such as fatty acids, amino acids, 

vitamins and pigments (Thompson et al., 

2002; Rajkumar and Kumaraguru-Vasagam, 

2006; Khatoon, 2006). Protozoans and 

nematodes are major source of fatty acids 
[65]

. 

Diatoms can give essential fatty acids and 

their lower fibre content can easily digested 

by shrimp (Zhukova and Kharlamenko, 

1999). For example, Penaeus larva requires 

44% of protein and natural food organisms 

plays an important role in growth (Colvin and 

Brand, 1977). The utilization of periphyton 

elevates the nutritional quality of shrimp 

(Audelo-Naranjo et al., 2011) and it is also 
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depends on the type of substrate and 

submersion time. Ledger and Hidrew (1998) 

recorded 2-3% protein, 0.04-0.29% lipid, and 

29-33% carbohydrate in periphyton 

developed on stones. Azim et al., (2002) 

recorded that more protein from bamboo 

(32%) followed by kanchi (30%) and jute 

stick (13%). Keshavanath et al., (2004) 

recorded 19.27-35.56% of protein in 

periphyton produced on bamboo. Becker 

(2007) reported 35-63% of protein, 10-57% of 

lipid and 2-22% of fat and some algae. 
 

Water Quality in Substrate Systems 
 

Periphyton on immersed substrate plays a 

major role in maintaining water quality in 

rearing ponds. Algae on substrate increase 

nitrification process and keep low levels of 

TAN and nitrite in water (Ramesh et al., 

1999; Thompson et al., 2002; Khatoon et al., 

2009). Artificial substrate can reduce turbidity 

level of water and sufficient plankton in water 

(Asaduzzaman et al., 2008; 2009a). Drenner 

et al., (1997) used fish and periphyton for 

removing of nutrients from the water. Azim et 

al., (2001) reported that suspended solids in 

water were caught on the substrate, could 

reduce ammonia and nitrate, produce oxygen, 

breaking down organic matter and enhance 

nitrification process. Periphyton present on 

the substrates can besides assimilating 

ammonia and nitrite, can also maintain 

optimum dissolved oxygen level, maintain pH 

of the water (Azim et al., 2002; Dodds, 2003; 

Bender et al., 2004; Schveitzer et al., 2013). 

Arnold et al., (2006) evaluated water quality 

parameters on weekly basis in rearing P. 

Monodon (PL15) for 56 days at two stocking 

densities (1000/m
-3

 & 2000/m
-3

) with artificial 

substrates and without artificial substrates. 

Weekly reports shown that there is no 

significantly different (P > 0.05) in 

temperature, dissolved oxygen and pH among 

all tanks. The mean concentrations recorded 

by them for TAN, nitrite and nitrate with and 

without artificial substrates were 0.39±0.17 

ppm and 0.86±0.15 ppm; 0.62±0.09 ppm and 

0.99±0.34 ppm and 1.44±0.09 ppm and 

0.48±0.13 ppm respectively. Zhang et al., 

(2016) recorded significantly lower mean (P < 

0.05) values of nitrite and nitrate in substrate 

based systems than the control in L. vannamei 

rearing water. However, no significant 

difference (P < 0.05) in mean values of TAN 

was observed between control and substrate 

groups. 

 

Growth of shrimp in SBT Systems 

 

The production output of P.monodon 

juveniles both in terms of growth and survival 

was significantly increased (P < 0.05) by 

keeping submerged substrates (Arnold et al., 

2006). Ballester et al., (2007) reported higher 

(P < 0.05) final weight, survival and biomass 

in pink shrimp, Farfantepenaeus paulensis 

cultured in cages with polyethylene screen as 

substrates than that in cages without 

substrates. Uddin et al., (2007) reported that 

O. niloticus (GIFT) in polyculture with the 

freshwater prawn (Macrobrachium 

rosenbergii) showed significantly higher 

growth, survival and yield of both GIFT and 

freshwater prawn in ponds with bamboo 

substrates than in the control ponds. Zhang et 

al., (2010) reported significantly increased (P 

< 0.05) weight gain, survival and yield in L. 

vannamei with increase in number of 

substrates. Presence of substrates in the 

culturing systems has better growth of 

vannamei (Zhang, 2011). Similarly, Zhang et 

al., (2014) has showed significantly higher (P 

< 0.05) growth and survival of vannamei 

juveniles in substrate (bolting silk net) based 

ponds than that in control pond without 

artificial substrate under winter indoor 

condition. 
 

Immune Response of Shrimp in SBT 

System 

 

Studies by Zhang et al., (2010) observed 

significantly decreased (P < 0.05) activity of 
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non-specific immune parameters like 

phenoloxidase, antibacterial activity, 

lysozyme activity, peroxidase and hemolysin 

of L. vannamei juveniles reared in PVC 

aquaria with polypropylene fabrics screen 

substrates than those of control group. With 

an increasing substrates nos, the activity of 

these parameters were reduced, suggesting 

that submerged substrates can mitigate the 

negative impact of the more stocking density 

through providing enough living space for 

shrimp. The protein content of L. vannamei in 

both haemolymph and muscle, cultured in 

1000 lit capacity cylindrical polyethylene 

tanks with Aquamats was more than that of 

control, due to the higher availability (and 

diversity) of the periphyton (Audelo-Naranjo 

et al., 2012). 

 

Periphyton Production in SBT Systems 

 

The production of periphyton on immersed 

substrates is manipulated by different factors 

like accessibility of nutrients in the water, 

availability of light, depth of water, type of 

substrates etc. (Hay, 1991; Konan-Brou and 

Guiral, 1994; Keshavanath et al., 2001). 

Nature and type of substrate plays a major 

role on periphyton development, ash free dry 

matter, pigments and algal colonisation on the 

substrate (Anderson and Underwood, 1994; 

Keshavanath et al., 2001; Azim et al., 2001; 

Danilov and Ekelund, 2001). The high 

periphyton biomass [dry matter (DM) and ash 

free dry matter (AFDM)] was noticed on 

bamboo substrate than jute stick, paddy straw 

and bagasse reported by (Keshavanath et al., 

2001; Rai et al., 2008). 
]
. In marine 

environment the mean DM and AFDM 

recorded on substrates is 8.8 mg cm
-2

 and 4.5 

mg cm
-2

 on mosquito screen after 30 days, 

however, 10 out of 13 experiments in 

freshwaters recorded below 4.5 mg cm
-2

 of 

DM and below 1 mg cm
-2 

of AFDM
 
(Azim et 

al., 2004; Richard et al., 2009). 

 

In conclusion, Biofloc technology (BFT) and 

periphyton based culture systems are 

alternative rearing systems to the existing 

intensive systems to make shrimp farming 

less cost effective and economically viable, 

environmentally sustainable. These systems 

are zero water exchange systems, so they can 

reduce water usage and effluent discharges 

and improve biosecurity. Bioflocs and biofilm 

(periphyton) are having complex mixture of 

substances such as bacteria, filamentous 

microalgae, protozoans, rotifers, worms and 

nonliving components all these materials are 

used by the shrimp as natural food. These 

systems can play a major role in sustainable 

aquaculture via good water quality and 

decrease in feed requirement, enhance 

immune response of shrimp and higher yield 

to achieve more profit in shrimp farming. 
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